

A New 2 K Superconducting Half-Wave Cavity Cryomodule for PIP-II

Zachary Conway On Behalf of the ANL Physics Division Linac Development Group June 29, 2015

Acknowledgements

- People Working at ANL:
 - PHY: P. Ostroumov, M. Kelly, S. Gerbick, M. Kedzie, G. Zinkann, S.
 MacDonald, S.H. Kim and C. Hopper.
 - NE: R. Fischer, A. Barcikowski and G. Cherry.
 - HEP: T. Reid and B. Guilfolye.
 - APS: J. Fuerst and W. Jansma.
 - TechSource: K. Shepard.
 - Towson U.: N. Prins.
 - Elmhurst College: D. McWilliams.
- FNAL Cryogenics Group & Tech Division.
 - T. Nicol and M. White.
- Many Vendors:
 - Meyer Tool and Manufacturing, IL.
 - Advanced Energy Systems, NY.
 - Adron EDM, WI.
 - Ti Fab, PA.
 - Numerical Precision, IL.
 - M-1 Tool Works, IL.

Introduction

- Building a cryogenic system for the acceleration of H- ions from 2.1 to 10 MeV for PIP-II @ FNAL.
 - Will contain accelerator cavities and magnets operating at 2 K.
- Will be the first operational 2 K cryomodule for superconducting accelerator cavities with low-beta (beta = v/c < 0.5) structures.
 - Using many techniques developed by velocity-of-light (or close to) accelerators; e.g., elliptical cell cavities.
 - Others are in development too; e.g., IFMIF, MSU-FRIB.
- Design goals for the:
 - Operate at 2 K instead of 4 K.
 - Further reduce static cryogenic loads relative to previous low-velocity cavity cryomodules.
 - Comply with DOE, ANL and FNAL safety guidelines for cryogenic, vacuum and pressure vessels.
 - Enable faster more-accurate alignment.

Half-Wave Resonator Cryomodule

2 K Low-Beta Cavity Cryomodules

- Low-beta = low-frequency and losses scale as f². Low-beta cavities have traditionally operated at 4.2 K to save on refrigeration.
- Why operate at 2 K now?
 - The rest of the system is 2 K = Simplified Cryogenic Distribution.
 - The performance improvement justifies the extra cryogenic cost.

Cryomodule 2 K Design Thermal Loads

Design: Cavities and Cryomodules

- Design must protect against:
 - Plastic Collapse.
 - Local Failure.
 - Buckling.
 - Failure with Cyclic Loading.
- Design must also:
 - Maintain alignment.
 - Not break penetrations.
- Not discussing solenoids.
 They receive an ASME Ustamp.

20°C Material Properties

Material	Young's Modulus (ksi)	Poisson's Ratio	Density (lbs/in³)	Maximum Allowable Stress (ksi)
304 Stainless Steel	29,000	0.270	0.286	20.0
Niobium	15,200	0.396	0.310	5.5

- Vessel Design: Cryomodule
 - Vacuum Vessel @ 14.7 psiv.
 - Used ASME BPVC code to demonstrate protect against:
 - Plastic Collapse (Limit-Load).
 - Local Failure.
 - Buckling.
 - Ratcheting and Cyclic Loading.
 - Very safe vacuum vessel.

Vacuum Vessel Deformation x50 (1000)

Max Deformation = 0.26"

- Magnetic shielding lines the inner surface of the vacuum vessel.
- 70 K thermal shield inboard of magnetic shield.
 - 32 layers MLI outside.
 - 16 layers MLI inside.

Vessel Design: Cavities

- Design Loads:
 - 2 bar @ R.T.
 - 4 bar @ 2 K.
- Used the rules in the ASME BPVC. No code stamp.
- Used material properties for Nb in compliance with FNAL safety guidelines.

Finished Cavity

Bare Niobium Cavity

Alignment - 1: Thermal Contraction & Kinematics

- Need to align solenoids to ±250 µm_{rms} and ±0.1^o in pitch, yaw and roll relative to the beam axis.
- Transverse shift ~ negligible.
 - We have changed from a Kelvin to a Maxwell planar kinematic coupling.
 - Maxwell geometry can be designed to be thermally invariant.
 - Kelvin geometry shifts toward fixed point.
- Vertical Shift = 650 μm up.
 - Hanger Contraction = + 1,640 μ m up.
 - Alignment System contraction = -990 μm up.
 - Possible to zero.

"Design of three-grove kinematic couplings," A.H. Slocum, Precision Engineering **14**, Pg. 67 (1992). "Optimal design techniques for kinematic couplings," Precision Engineering **25**, Pg. 114 (2001).

Cold-Mass Hangers

- Hangers have to:
 - Support the 4 ton coldmass.
 - Allow for adjustment and alignment of the cold-mass.
 - Thermally isolate the ~2 K cold-mass from room temperature.
- We take advantage of:
 - Low thermal conductivity materials.
 - Relatively high thermal contact resistance for grease- and lubrication-free connections.

Alignment - 2: Ti Strong-Back

- When lid is on the box the loaded strong-back rails are flat and parallel within 0.005".
- Lifting may perturb the alignment.
- Reduced lifting disturbance via design.

Strong-Back

Summary

- At ANL we are developing a 2K superconducting accelerator cavity cryomodule.
- Cryomodule assembly is starting now.
- Hope to test the system without cavities or solenoids late this year.

Primary Stresses 14.7 psiv, Red > 20 ksi Original Stresses w/

 $Red > 30 ksi_{12}$

14.7 psiv